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Abstract

Optimal design methods (designed to choose optimal sampling distributions through mini-
mization of a specific cost function related to the resulting error in parameter estimates) for
inverse or parameter estimation problems are considered. We compare a recent design criteria,
SE-optimal design (standard error optimal design [8]) with the more traditional D-optimal and
E-optimal designs. The optimal sampling distributions from each design are used to compute and
compare standard errors; here the standard errors for parameters are computed using the opti-
mal mesh along with Monte Carlo simulations as compared to asymptotic theory based standard
errors. We illustrate ideas with two examples: the Verhulst-Pearl logistic population model [10]
and the standard harmonic oscillator model [10].
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1 Introduction

In recent years modeling in the life sciences involves increasingly sophisticated models with a plethora
of parameters to be estimated. This is due in part to increasingly stringent requirements concerning
accuracy and the desire for adaptation of models to individual subjects. In contrast to this complex
situation one usually is confronted with serious restrictions on data which often need to be obtained
by noninvasive or modestly invasive procedures. The validation of such models is, as a result, a
very challenging problem. It is therefore necessary to design the data collection procedures very
carefully in order to optimize the information content carried by the data obtained. Methods of
optimal experimental design are of central importance in this context and have justifiably received
significant attention in the research literature (see for example [11, 14, 15, 22]). Since one has
a number of different design criteria from which to choose, it is important to have procedures to
compare typical results obtained by using different criteria. A natural criterion for comparison of
different approaches are the standard errors of the parameters estimated on the basis of the data
provided by the optimally designed experiments. One possibility which has been frequently employed
is the asymptotic approximation of standard errors [23] which are based on only a single realization
and the limiting approximations. However, such standard errors obtained in specific cases may not
be sufficiently precise, because the underlying assumptions for these asymptotic approximations may
not be satisfied. Therefore it is of interest to use a different approach which is not based on a
single realization of the observation process, but uses a large number of realizations, with, of course,
increased computational costs. To illustrate an alternative approach, we present in this paper a
detailed Monte Carlo analysis of the performance of several optimal design methods for the logistic
and harmonic oscillator examples which were previously [8] investigated using asymptotic standard
errors as a measure of comparison.

2 Optimal design of sampling times

Given the duration or time interval [0, T ] for an experiment and the number N of the sampling
times allowed, the remaining fundamental question of optimal experimental design to be answered
is the location of the sampling times in [0, T ]. In [7] a general theoretical framework for optimal
experimental design problems has been developed, which incorporates all design criteria based on
the Fisher Information Matrix (FIM) (see (2.6) below for a definition of the FIM in case of discrete
sampling times) for the given parameter estimation problem. This general theoretical framework is
based on abstract sampling distributions which can be represented using probability measures on
the Borel subsets of [0, T ], which typically cannot be realized by concrete measurement procedures.
However, this general approach provides an abstract setting for existence and approximation results
based on the fact that the space P(0, T ) of probability measures on [0, T ] supplied with the Prohorov
metric (see [2, 12, 16, 21]) is a compact and separable metric space (see [7, Section 4]). In particular,
this theory permits development of computational methods using discrete measures with a finite
number of atoms, which are precisely those corresponding to sampling procedures which can be
realized. In the following we present the results only for this case and refer for the general theory to
[7].

Underlying our considerations is a mathematical output model

η(t) = f(t, θ), t ∈ [0, T ], θ ∈ A, (2.1)

where η(t) ∈ R is the scalar measurable or observable output of the system, f : [0, T ] × A → R
is a sufficiently smooth mapping, θ ∈ Rp is the vector of system parameters, A ⊂ Rp is the set of
admissible parameter vectors and T is the endpoint of the observation interval.
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To consider measures of uncertainty in estimated parameters, one also requires a statistical model
[4]. Our statistical model is given by the stochastic observation process

Y (t) = f(t, θ0) + E(t), t ∈ [0, T ]. (2.2)

Here E is a stochastic process representing measurement errors and, as usual in statistical formu-
lations [4, 7, 13, 23], θ0 is the vector of the hypothesized “true” or nominal values of the unknown
parameters. We make the following standard assumptions on the random variables E(t):

E(E(t)) = 0, t ∈ [0, T ],

VarE(t) = σ(t)2I, t ∈ [0, T ],

Cov(E(t)E(s)) = σ(t)2Iδ(t− s), t, s ∈ [0, T ],

(2.3)

where δ(s) = 1 for s = 0 and δ(s) = 0 for s 6= 0. A realization of the observation process is given by

y(t) = f(t, θ0) + ε(t), t ∈ [0, T ],

where y(t) is a concrete measurement for η(t) at time t and the measurement error ε(t) is a realization
of E(t).

The statistical model we assume is a classical first model widely found in regression analysis [13, 23]
and is often employed in development of ideas (asymptotic distribution theory, statistical comparison
tests, etc.) as well as in certain applications. Two (the second and third) of the assumptions (2.3) are
sometimes violated in repeated measurement data problems, especially in economic data and in bio-
logical data with high frequency sampling using model response dependent assays. The assumptions
of independence and zero correlation for the statistical model can often be checked/supported via
residual plots [4, 10, 13, 23] (after carrying out the inverse or regression problem fits with ordinary
least squares). More sophisticated error models (e.g., nonconstant variance, nontrivial correlation)
might also require different inverse problem formulations [4] (e.g., generalized least squares or maxi-
mum likelihood if sufficient information is known about the distributions of errors). Our choice of this
simple statistical model was motivated primarily for two reasons: (i) it is simple, widely known/used
and easy to use in comparison of designs, and (ii) our own efforts (e.g., see [3, 5, 6, 9, 10] and the
references therein) in numerous inverse problems with longitudinal data for HIV patients, data for
insect and marine populations, and vibrational engineering data often have dealt with data in which
independence of sampling appeared to be reasonable. Even when correlation might be present, it
is often assumed fast decaying with respect to distance/time between observations (this is a stan-
dard correlation model-see [13, 23]) and independence is a reasonable assumption for low frequency
sampling times. However, there are numerous situations in practice where independence is readily
violated (e.g., economics and biology) and techniques in the presence of nontrivial data correlations
are an active area of optimal design research (see [19, 20, 24] and the references therein).

For sampling points τ = {ti}i=1,...,N , t1 ≤ · · · ≤ tN in [0, T ], we introduce the weighted least squares
criterion

J(y, θ) =
N∑
i=1

1

σ(ti)2
(
y(ti)− f(ti, θ)

)2
, θ ∈ A. (2.4)

We seek the parameter estimate θ̂ by minimizing J(y, θ) for θ ∈ A,

θ̂ = argmin
θ∈A

J(y, θ). (2.5)

Of central importance for our discussions is the Fisher Information Matrix (FIM),

F (τ, θ0) =
N∑
j=1

1

σ2(tj)
∇θf(tj , θ0)

T∇θf(tj , θ0), (2.6)
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where ∇θ is a row vector given by (∂θ1 , . . . , ∂θp) and hence ∇θf(tj , θ) |θ=θ0 , the gradient of f with
respect to θ, is a row vector of length p.

The estimate θ̂ obtained in (2.5) for a specific set of measurements is a representation of a random
variable Θ̂ = Θ̂(τ, θ0), the least squares estimator for our parameter estimation problem. We are
interested in the statistical properties of Θ̂. Using linearization of f(t, θ) around θ0 and asymptotic
results of statistical analysis for least squares estimation we obtain that (see [7, Appendix])

E(Θ̂) ≈ θ0,
Cov(Θ̂) ≈ F (τ, θ0)

−1.

As a consequence we have the following asymptotic standard errors for the components of the estimate
θ̂ obtained in (2.5):

SE(θ̂k) =
√(

F (τ, θ0)−1
)
kk
, k = 1, . . . , p. (2.7)

The major question in optimal design of experiments which we consider in this paper is how to best
choose τ = {ti}i=1,...,N ∈ T , where T is the set of all time meshes such that 0 ≤ t1 ≤ · · · ≤ ti ≤
ti+1 ≤ · · · ≤ tN ≤ T . In order to characterize “best” we have to use a design criterion. In order to
define such design criteria we observe that the FIM F (τ, θ0) depends critically on the sampling mesh
τ . Let a continuous functional J : Rp×p → R+ be given. The optimal design problem associated
with J is the one of finding a sampling mesh τ∗ ∈ T such that

J
(
F (τ∗, θ0)

)
= min

τ∈T
J
(
F (τ, θ0)

)
. (2.8)

The mapping τ → J
(
F (τ, θ0)

)
is the design criterion used for the design problem.

The formulation (2.8) incorporates all optimal design methods which are based on minimizing or
maximizing a functional depending continuously on the Fisher Information Matrix. In this paper
we compare the results obtained with the following optimal design methods: SE-optimal design as
introduced in [7], D-optimal design and E-optimal design. The design cost functional J for the
SE-optimal design method (see [7]) is given by

JSE(F ) =

p∑
i=1

1

θ20,i

(
F−1

)
ii
, (2.9)

where F = F (τ, θ0) is the FIM defined above in (2.6), θ0 is the true parameter vector, and p is the
number of parameters to be estimated. Note that both inversion and taking the trace of a matrix
are continuous operations. We observe that F (τ, θ0)

−1
ii = SE(θ̂i)

2. Therefore, SE-optimal design
minimizes the sum of squared normalized asymptotic standard errors.

D-optimal design minimizes the volume of the confidence ellipsoid for the asymptotic covariance
matrix F (τ, θ0)

−1. The design cost functional for D-optimal design (see [11, 15]) is given by

JD(F ) = detF−1. (2.10)

Again we note that taking the determinant is a continuous operation on matrices so that JD is
continuous in F as required by the theory.

E-optimal design minimizes the principle axis of the confidence ellipsoid of the covariance matrix
(defined in the asymptotic theory summarized in the next section). The design cost functional for
E-optimal design (see [1, 11]) is given by

JE(F ) = max
i

1

λi
, (2.11)

where λi, i = 1 . . . p, are the eigenvalues of F (which are continuous functions of F ). Consequently
1
λi

, i = 1, . . . , p, are the eigenvalues of the asymptotic covariance matrix F (τ, θ0)
−1.
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2.1 Constrained optimization and implementations

Each optimal design computational method we employ is based on constrained optimization to find
the mesh of time points τ∗ = {t∗i }, i = 1, . . . , N , that satisfy

J (F (τ∗, θ0)) = min
τ∈T
J
(
F (τ, θ0)

)
,

where T is the set of all time meshes such that 0 ≤ t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN ≤ T .

These optimal design methods were implemented using constrained optimization algorithms, either
MATLAB’s fmincon or SolvOpt, developed by A. Kuntsevich and F. Kappel [18, 17], with four
variations of the constraint implementation. We denote by (C1) – (C4) these different constraint
implementations (which most often do result in different parameter and standard error outcomes
even in cases where the {ti}i=1,...,N are initially required to satisfy similar constraints). Complete
details of the precise implementation differences in the algorithms are given in the appendix of [8].
We briefly summarize these here.

(C1) In this case we impose the inequality constraints

0 ≤ t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN ≤ T,

i.e., the optimal mesh may or may not contain 0 and T . In this case we optimize over N
variables.

(C2) In this case we fix t1 = 0, tN = T and impose the inequality constraints

0 ≤ t2 ≤ · · · ≤ tN−1 ≤ T,

i.e., the optimal mesh contains 0 and T . Hence we optimize over N − 2 variables.

(C3) We also fix t1 = 0, tN = T and represent the other mesh points by ti = ti−1+νi, i = 2, . . . , N−1.
For νi, i = 2, . . . , N − 1 we impose the inequality constraints

νi ≥ 0, i = 2, . . . , N − 1, and ν2 + · · ·+ νN−1 ≤ T.

Note that the optimal mesh always contains 0 and T as we optimize over N − 2 variables.

(C4) We fix t1 = 0 and, as in case (C3), represent the other sampling times by ti = ti−1 + νi,
i = 2, . . . , N . For νi, i = 2, . . . , N , we impose the constraints

νi ≥ 0, i = 2, . . . , N, and T = ν2 + · · ·+ νN .

The equality constraint can be also written as νN = T −
∑N−1

i=2 νi. The optimal mesh again
contains 0 and T , and we optimize over N − 1 variables. Note that in view of the equality
constraint and the definition of the νi we have tN = ν2 + · · ·+ νN = T .

3 Monte Carlo methodology

For a single Monte Carlo trial, we generate simulated data on the optimal mesh τ∗ = {tj}j=1,...,N

based on the true parameter vector θ0 corresponding to our statistical model

yj = f(tj , θ0) + εj , j = 1, . . . , N,
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where the εj are realizations of Ej ∼ N (0, σ20) for j = 1, . . . , N . Parameters are estimated using OLS

taking the initial parameter guess to be θ0 = 1.4θ0. The parameter estimates θ̂ are stored, and the
process is repeated with new simulated data corresponding to the optimal mesh for M Monte Carlo
trials. For the concrete examples considered in Sections 4 and 5 we always take

M = 1000.

More trials increase the resolution though the results remain unchanged.

In addition, for each simulated data set we computed the estimated Fisher Information Matrix (FIM)
F̂ = F (τ∗, θ̂), to determine if the 95% confidence ellipsoid contains the true parameter values θ0.
The 95% confidence ellipsoid [23] corresponding to normally distributed residuals is defined by(

θ − θ̂
)T
F̂
(
θ − θ̂

)
= pFαp,n−p,

where Fαp,n−p is the F-distribution with p numerator degrees of freedom, n−p denominator degrees of
freedom, and critical level α = 0.05. The confidence ellipsoid will contain the true parameter vector
θ0 if the following inequality holds:(

θ0 − θ̂
)T
F̂
(
θ0 − θ̂

)
≤ pFαp,n−p. (3.1)

The Monte Carlo analysis was carried out for the three different optimal design methods (SE-optimal,
D-Optimal and E-optimal) as well as for the uniform mesh, each time with M new sets of simulated
data. For each Monte Carlo analysis, the average parameter estimate θ̂avg is reported along with

its standard deviation θ̂SD. We also will compare the standard deviations θ̂SD of these Monte Carlo
trials to the asymptotic standard errors SE(θ̂) as computed using asymptotic theory in (2.7).

In addition, we report the proportion P̂ of confidence ellipsoids containing the true vector θ0 and
the corresponding standard error SE(P̂ ),

P̂ =
# of 95% confidence ellipsoids containing θ0

M
, SE(P̂ ) =

√
P̂ (1− P̂ )

M
. (3.2)

Note that P̂ is the estimate of P0 the true proportion. Figure 1 gives an example of 95% confidence
ellipsoids corresponding to parameter estimates for given simulated data. The true parameter vector
is plotted as a point in Rp = R2. Ellipsoids that contain the true parameter vector are gray and
those that do not are black, as determined by the inequality given in (3.1). We are interested to
see if P̂ is close to 0.95 (95% confidence ellipsoid) for the different optimal design methods and the
uniform mesh.
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Figure 1: A generic example of 95% confidence ellipsoids (from M = 30 simulated data sets, esti-
mating p = 2 parameters), where the true value is given by the star. Confidence ellipsoids containing
the true value are gray, and confidence ellipsoids not containing the true value are black.

4 Results for the logistic equation

4.1 The Verhulst-Pearl logistic population model

The widely used logistic population model describes the growth of a population in an environment
with a finite carrying capacity for the population. It is given by the differential equation:

ẋ(t) = rx(t)
(
1− x(t)/K

)
, x(0) = x0, (4.1)

where K is the carrying capacity of the environment for the population, r is the intrinsic growth
rate, and x0 is the initial population size. The analytical solution to this initial value problem is
given by

x(t) = x(t, θ) =
K

1 +
(
K/x0 − 1

)
e−rt

, t ≥ 0,

where θ = (K, r, x0)
T is the vector of system parameters.

For the statistical model in this case we choose

f(t, θ) = x(t, θ), t ≥ 0.

In all our simulations we took the nominal parameter vector θ0 and the length T of the sampling
interval to be

θ0 =
(
Knom, rnom, x0,nom

)T
=
(
17.5, 0.7, 0.1

)T
, T = 25. (4.2)

4.2 Monte Carlo analysis for the logistic equation

Monte Carlo analysis was performed using the optimal design points found using constraint imple-
mentation (C2) and SolvOpt with N = 10 or N = 15 (see Figure 2). The nominal parameter vector
θ0 and T are always given by (4.2). The Monte Carlo analysis was conducted three times for each
optimal design mesh taking different levels of constant variance (σ2(t) = σ20 for all t) noise in the
simulated data,

σ20 = 0.01, 0.05 or 0.1.
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Tables 1 – 3 and 5 – 7 contain the average estimates and standard deviations obtained from the Monte
Carlo trials for N = 10 and N = 15 respectively and for the three different noise levels. In addition,
the tables show the asymptotic standard errors, obtained from (2.7) using the true parameter values,
for comparison with the standard deviations of the Monte Carlo parameter estimates. The percentage
of 95% confidence ellipsoids which contain the true parameter vector and the corresponding standard
errors as given by (3.2) are shown in Tables 4 and 8. Histograms of the parameter estimates are
plotted in Figures 3 – 5 for N = 10 and Figures 6 – 8 for N = 15. Each figure corresponds to a specific
value of σ20. Subfigures represent histograms for different parameter estimates, θ̂ = (K̂, r̂, x̂0)

T.
Within each subfigure there are histograms for a specific parameter originating from an optimal
design mesh or the uniform mesh.
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Figure 2: Optimal sampling times according to the optimal design criteria and uniform sampling
times plotted on the logistic curve. Optimal sampling times were obtained using SolvOpt with N = 10
(left panel), N = 15 (right panel), and the constraint implementation (C2).

Table 1: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 10, σ2
0 = 0.01

SE-opt D-opt E-opt Uniform

K̂avg 17.5019 17.5015 17.5013 17.5003

K̂SD 4.527× 10−2 4.378× 10−2 3.495× 10−2 4.354× 10−2

SE(K̂) 4.466× 10−2 4.534× 10−2 3.535× 10−2 4.266× 10−2

r̂avg 0.7003 0.7004 0.7004 0.6995

r̂SD 8.560× 10−3 9.341× 10−3 2.247× 10−2 1.198× 10−2

SE(r̂) 7.167× 10−3 7.673× 10−3 1.928× 10−2 1.005× 10−2

x̂0,avg 0.1000 0.1000 0.1009 0.1007

x̂0,SD 6.087× 10−3 7.058× 10−3 1.577× 10−2 8.944× 10−3

SE(x̂0) 4.297× 10−3 4.965× 10−3 9.996× 10−3 6.194× 10−3

8



Table 2: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 10, σ2
0 = 0.05

SE-opt D-opt E-opt Uniform

K̂avg 17.5009 17.4979 17.5021 17.5059

K̂SD 1.022× 10−1 1.027× 10−1 8.133× 10−2 9.990× 10−2

SE(K̂) 9.987× 10−2 1.014× 10−1 7.906× 10−2 9.540× 10−2

r̂avg 0.7002 0.7005 0.7028 0.7007

r̂SD 1.895× 10−2 2.091× 10−2 5.290× 10−2 2.748× 10−2

SE(r̂) 1.603× 10−2 1.716× 10−2 4.312× 10−2 2.248× 10−2

x̂0,avg 0.1007 0.1009 0.1044 0.1017

x̂0,SD 1.334× 10−2 1.607× 10−2 3.612× 10−2 2.025× 10−2

SE(x̂0) 9.608× 10−3 1.110× 10−2 2.235× 10−2 1.385× 10−2

Table 3: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 10, σ2
0 = 0.1

SE-opt D-opt E-opt Uniform

K̂avg 17.5037 17.4942 17.4912 17.5067

K̂SD 1.390× 10−1 1.449× 10−1 1.069× 10−1 1.369× 10−1

SE(K̂) 1.412× 10−1 1.4339× 10−1 1.118× 10−1 1.349× 10−1

r̂avg 0.7004 0.7008 0.7079 0.7015

r̂SD 2.756× 10−2 3.140× 10−2 7.641× 10−2 3.882× 10−2

SE(r̂) 2.266× 10−2 2.426× 10−2 6.098× 10−2 3.179× 10−2

x̂0,avg 0.1015 0.1023 0.1072 0.1028

x̂0,SD 1.926× 10−2 2.441× 10−2 5.158× 10−2 2.832× 10−2

SE(x̂0) 1.359× 10−2 1.570× 10−2 3.161× 10−2 1.959× 10−2

Table 4: Percent of confidence ellipsoids which contain the true parameter values (N=10).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 94.8% (SE = 0.70%) 94.5% (SE = 0.72%) 92.2% (SE = 0.85%)

D-opt 94.7% (SE = 0.71%) 93.3% (SE = 0.79%) 88.3% (SE = 1.02%)

E-opt 91.2% (SE = 0.90%) 82.7% (SE = 1.20%) 76.7% (SE = 1.34%)

Uniform 94.4% (SE = 0.73%) 89.7% (SE = 0.96%) 89.0% (SE = 0.99%)

4.3 Discussion of logistic Monte Carlo results

A general observation from these results is that as the measurement noise level decreases, variance
in the parameters (θ̂SD) decreases, and parameter estimates approach the true parameter values.
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Figure 3: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 10 and 1% noise (σ20 = 0.01).

Comparing the standard deviation of the parameter estimates (θ̂SD) to the asymptotic standard
errors (SE(θ̂)) we find that they are always on the same order of magnitude, and often the asymptotic
standard errors are slightly smaller (more optimistic).

In all cases the average parameter estimates were very close to the true values. Comparing the optimal
design methods based on the standard deviations of the parameter estimates, we find different results
based on the parameter. For parameter K, E-optimal had the smallest standard deviation in every
case, followed by the uniform distribution. For parameters r and x0, SE-optimal always had the
smallest standard deviation, often followed by D-optimal. Visually, E-optimal distributions appear
right-skewed for parameters r and x0 for σ20 = 0.10, and N = 10 and N = 15 (see Figs. 5 and 8).
Overall, these results seem to be in agreement with the comparative performances of the optimal
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Figure 4: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 10 and 5% noise (σ20 = 0.05).

design methods presented in [8] where we used for comparison only asymptotic standard errors based
on only one realization of the observation procedure.

Examining the proportion of 95% confidence ellipsoids that contain the true parameter value (Tables 4
and 8) we find that often the proportion falls short of the expected 0.95, especially for increased
values of σ20. Comparing the optimal design methods based on which has the best coverage of the
true parameter value, we find that SE-optimal is the best, followed by D-optimal or the uniform
mesh, with E-optimal being the least desirable design method for this logistic example.
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Figure 5: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 10 and 10% noise (σ20 = 0.10).
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Table 5: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 15, σ2
0 = 0.01

SE-opt D-opt E-opt Uniform

K̂avg 17.5001 17.4990 17.4980 17.5000

K̂SD 3.747× 10−2 3.544× 10−2 2.914× 10−2 3.534× 10−2

SE(K̂) 3.774× 10−2 3.612× 10−2 3.015× 10−2 3.537× 10−2

r̂avg 0.7002 0.7000 0.7010 0.7001

r̂SD 6.740× 10−3 8.543× 10−3 1.946× 10−2 9.622× 10−3

SE(r̂) 5.547× 10−3 6.862× 10−3 1.713× 10−2 8.088× 10−3

x̂0,avg 0.0999 0.1002 0.1001 0.1002

x̂0,SD 4.895× 10−3 6.309× 10−3 1.197× 10−2 6.993× 10−3

SE(x̂0) 3.524× 10−3 4.185× 10−3 7.560× 10−3 4.989× 10−3

Table 6: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 15, σ2
0 = 0.05

SE-opt D-opt E-opt Uniform

K̂avg 17.4980 17.5029 17.4994 17.5002

K̂SD 8.612× 10−2 7.832× 10−2 6.850× 10−2 7.883× 10−2

SE(K̂) 8.438× 10−2 8.077× 10−2 6.742× 10−2 7.910× 10−2

r̂avg 0.7009 0.7005 0.7017 0.7008

r̂SD 1.529× 10−2 1.966× 10−2 4.524× 10−2 2.250× 10−2

SE(r̂) 1.240× 10−2 1.534× 10−2 3.831× 10−2 1.809× 10−2

x̂0,avg 0.1000 0.1006 0.1028 0.1007

x̂0,SD 1.120× 10−2 1.453× 10−2 2.757× 10−2 1.647× 10−2

SE(x̂0) 7.880× 10−3 9.357× 10−3 1.690× 10−2 1.116× 10−2
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Table 7: Average estimates θ̂avg and corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).

N = 15, σ2
0 = 0.1

SE-opt D-opt E-opt Uniform

K̂avg 17.4987 17.5014 17.5014 17.5071

K̂SD 1.192× 10−1 1.135× 10−1 9.545× 10−2 1.151× 10−1

SE(K̂) 1.193× 10−1 1.142× 10−1 9.535× 10−2 1.119× 10−1

r̂avg 0.7011 0.7017 0.7046 0.7010

r̂SD 2.070× 10−2 2.703× 10−2 6.565× 10−2 3.132× 10−2

SE(r̂) 1.754× 10−2 2.170× 10−2 5.417× 10−2 2.558× 10−2

x̂0,avg 0.1007 0.1009 0.1043 0.1018

x̂0,SD 1.530× 10−2 2.026× 10−2 4.032× 10−2 2.317× 10−2

SE(x̂0) 1.114× 10−2 1.323× 10−2 2.391× 10−2 1.578× 10−2

Table 8: Percent of confidence ellipsoids which contain the true parameter values (N=15).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 95.7% (SE = 0.64%) 94.0% (SE = 0.75%) 93.5% (SE = 0.78%)

D-opt 95.1% (SE = 0.68%) 92.3% (SE = 0.84%) 89.2% (SE = 0.98%)

E-opt 93.9% (SE = 0.76%) 87.8% (SE = 1.04%) 82.5% (SE = 1.20%)

Uniform 94.0% (SE = 0.75%) 91.2%,(SE = 0.90%) 89.7% (SE = 0.96%)
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Figure 6: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 15 and 1% noise (σ20 = 0.01).
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Figure 7: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 15 and 5% noise (σ20 = 0.05).
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Figure 8: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel (c)) resulting
from Monte Carlo simulation with M = 1000. Different histograms within each subfigure represent
results from different optimal design methods as well as from the uniform mesh. Simulated data was
generated with N = 15 and 10% noise (σ20 = 0.10).
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5 Harmonic oscillator results

5.1 The harmonic oscillator

Harmonic oscillators are ubiquitous in science, being found in a number of applications ranging
from biology (Lorentz electromagnetic polarization laws in tissue), electronic circuits and mechanical
devices. The model for the harmonic oscillator can be easily derived (see [10]) using Hooke’s Law
and Newton’s Second Law of Motion and is given with out external forcing by

mẍ+ cẋ+ kx = 0, ẋ(0) = x1, x(0) = x2.

Here, m is mass, c is the damping coefficient, and k is the spring constant. The parameters m, c and
k are not independent for the unforced oscillator. Dividing through by m, and defining C = c/m
and K = k/m, we can reduce the number of parameters and obtain

ẍ+ Cẋ+Kx = 0, ẋ(0) = x1, x(0) = x2. (5.1)

The analytical solution of the initial value problem (5.1) is given by

x(t) = x(t, θ) = e−at
(
x2 cos bt+

x1 + ax2
b

sin bt

)
for 0 ≤ t ≤ T,

where a = 1
2C, b =

√
K − 1

4C
2. For the following investigations we fixed the initial values in problem

(5.1) to the values x1 = −1, x2 = 0.5. The parameter vector considered is θ =
(
C,K

)T
.

For our Monte Carlo analysis we choose the nominal parameter vector

θ0 =
(
Cnom,Knom

)T
=
(
0.1, 0.2

)T
and take displacement x(t, θ) as the model output so that

f(t, θ) = x(t, θ), t ≥ 0.

5.2 Monte Carlo analysis for the harmonic oscillator model

Monte Carlo analysis was conducted using the optimal design points computed with N = 15, T =
14.14 or T = 28.28, and the four different implementations (C1) – (C4) of the constraints (see
Figures 9 and 10). For each optimal mesh or the uniform mesh, the Monte Carlo analysis was repeated
three times for different constant variance (σ2(t) = σ20 for all t) noise levels σ20 = (0.01, 0.05, 0.10).
Figures 11 – 18 contain histogram plots of the parameter estimates (Ĉ, K̂). Each figure represents
results from a specific constraint implementation and a value of T . Each subfigure represents one
of the parameters and one value of σ20. Within a subfigure are histograms corresponding to each
optimal design method (SE-optimal, D-optimal, and E-optimal) and the uniform mesh.
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Figure 9: Optimal sampling times according to the design criteria for the harmonic oscillator. Opti-
mal sampling times were obtained using SolvOpt with N=15, constraint implementation (C1) (upper
panels) respectively (C2) (lower panels) and T = 14.14 (left panels) respectively T = 28.28 (right
panels).
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Figure 10: Optimal sampling times according to the design criteria for the harmonic oscillator.
Optimal sampling times were obtained using SolvOpt with N=15, constraint implementation (C3)
(upper panels) respectively (C4) (lower panels) and T = 14.14 (left panels) respectively T = 28.28
(right panels).

20



Tables 9 – 11, 14 – 16, 19 – 21, and 24 – 26 contain the average estimates and standard deviations
from the Monte Carlo trials for the four constraints respectively, and both T = 14.14 and T = 28.28,
as well as for the three different noise levels. In addition, the tables contain the asymptotic standard
errors as computed in (2.7) using the true parameter values, for comparison with the standard
deviations of the Monte Carlo parameter estimates. The percentage of 95% confidence ellipsoids
which contain the true parameter values are given in Tables 12, 13, 17, 18, 22, 23, 27, and 28.
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Figure 11: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 14.14 and constraint implementation
(C1)).
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Table 9: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation with constraint implementation (C1).

N = 15, σ2
0 = 0.01

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0998 0.0999 0.0999 0.1002

ĈSD 5.197× 10−3 4.904× 10−3 5.928× 10−3 6.495× 10−3

SE(Ĉ) 5.004× 10−3 4.746× 10−3 5.818× 10−3 6.577× 10−3

K̂avg 0.2002 0.2001 0.2000 0.2000

K̂SD 4.049× 10−3 2.360× 10−3 3.482× 10−3 2.977× 10−3

SE(K̂) 3.678× 10−3 2.378× 10−3 3.416× 10−3 2.895× 10−3

T = 28.28

Ĉavg 0.1000 0.0999 0.0999 0.1000

ĈSD 4.493× 10−3 4.319× 10−3 5.707× 10−3 5.123× 10−3

SE(Ĉ) 4.342× 10−3 4.284× 10−3 5.214× 10−3 5.127× 10−3

K̂avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.238× 10−3 1.854× 10−3 3.981× 10−3 2.413× 10−3

SE(K̂) 3.021× 10−3 1.994× 10−3 3.412× 10−3 2.307× 10−3

Table 10: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation with constraint implementation (C1).

N = 15, σ2
0 = 0.05

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0999 0.1008 0.0994 0.0994

ĈSD 1.145× 10−2 1.019× 10−2 1.286× 10−2 1.457× 10−2

SE(Ĉ) 1.119× 10−2 1.061× 10−2 1.301× 10−2 1.471× 10−2

K̂avg 0.2008 0.2000 0.2001 0.2001

K̂SD 8.782× 10−3 5.430× 10−3 7.761× 10−3 6.469× 10−3

SE(K̂) 8.224× 10−3 5.318× 10−3 7.640× 10−3 6.473× 10−3

T = 28.28

Ĉavg 0.0996 0.0997 0.0988 0.1001

ĈSD 9.659× 10−3 9.588× 10−3 1.224× 10−2 1.183× 10−2

SE(Ĉ) 9.708× 10−3 9.579× 10−3 1.166× 10−2 1.146× 10−2

ˆ̂
Kavg 0.2004 0.2000 0.2013 0.2001

K̂SD 7.795× 10−3 4.295× 10−3 1.129× 10−2 5.114× 10−3

SE(K̂) 6.755× 10−3 4.459× 10−3 7.629× 10−3 5.159× 10−3
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Table 11: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation with constraint implementation (C1).

N = 15, σ2
0 = 0.1

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0999 0.1003 0.0991 0.1008

ĈSD 1.621× 10−2 1.445× 10−2 1.842× 10−2 2.107× 10−2

SE(Ĉ) 1.582× 10−2 1.501× 10−2 1.840× 10−2 2.080× 10−2

K̂avg 0.2008 0.2002 0.2007 0.2000

K̂SD 1.286× 10−2 7.447× 10−3 1.131× 10−2 9.192× 10−3

SE(K̂) 1.163× 10−2 7.521× 10−3 1.080× 10−2 9.154× 10−3

T = 28.28

Ĉavg 0.0991 0.0998 0.0978 0.0992

ĈSD 1.386× 10−2 1.353× 10−2 1.714× 10−2 1.628× 10−2

SE(Ĉ) 1.373× 10−2 1.355× 10−2 1.649× 10−2 1.621× 10−2

K̂avg 0.2015 0.2003 0.2038 0.2001

K̂SD 1.106× 10−2 6.602× 10−3 1.807× 10−2 7.350× 10−3

SE(K̂) 9.553× 10−3 6.305× 10−3 1.079× 10−2 7.295× 10−3

Table 12: Percent of confidence ellipsoids which contain the true parameter values
(T = 14.14, constraint implementation (C1)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 95.9% (SE = 0.63%) 94.7% (SE = 0.71%) 94.3% (SE = 0.73%)

D-opt 95.2% (SE = 0.68%) 96.7% (SE = 0.56%) 95.9% (SE = 0.63%)

E-opt 95.5% (SE = 0.66%) 94.4% (SE = 0.73%) 94.6% (SE = 0.71%)

Uniform 94.6% (SE = 0.71%) 95.2% (SE = 0.68%) 95.4% (SE = 0.66%)

Table 13: Percent of confidence ellipsoids which contain the true parameter values
(T = 28.28, constraint implementation (C1)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 95.5% (SE = 0.66%) 92.6% (SE = 0.83%) 93.2% (SE = 0.80%)

D-opt 95.7% (SE = 0.64%) 95.1% (SE = 0.68%) 93.1% (SE = 0.80%)

E-opt 94.9% (SE = 0.70%) 92.8% (SE = 0.82%) 90.5% (SE = 0.93%)

Uniform 95.3% (SE = 0.67%) 94.2% (SE = 0.74%) 93.3% (SE = 0.79%)
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Figure 12: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 28.28 and constraint implementation
(C1)).
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Figure 13: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 14.14 and constraint implementation
(C2)).
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Table 14: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C2).

N = 15, σ2
0 = 0.01

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.1000 0.1000 0.0998 0.0998

ĈSD 5.264× 10−3 5.261× 10−3 5.536× 10−3 6.431× 10−3

SE(Ĉ) 5.444× 10−3 4.987× 10−3 5.700× 10−3 6.577× 10−3

K̂avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.424× 10−3 2.211× 10−3 3.112× 10−3 2.867× 10−3

SE(K̂) 3.344× 10−3 2.181× 10−3 3.008× 10−3 2.895× 10−3

T = 28.28

Ĉavg 0.0999 0.0998 0.0998 0.1001

ĈSD 4.741× 10−3 4.630× 10−3 5.454× 10−3 5.342× 10−3

SE(Ĉ) 4.537× 10−3 4.528× 10−3 5.279× 10−3 5.127× 10−3

K̂avg 0.2001 0.2000 0.2000 0.2000

K̂SD 3.414× 10−3 2.202× 10−3 3.509× 10−3 2.285× 10−3

SE(K̂) 3.144× 10−3 2.137× 10−3 3.260× 10−3 2.307× 10−3

Table 15: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C2).

N = 15, σ2
0 = 0.05

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0996 0.0997 0.0999 0.1005

ĈSD 1.247× 10−2 1.125× 10−2 1.238× 10−2 1.564× 10−2

SE(Ĉ) 1.217× 10−2 1.115× 10−2 1.275× 10−2 1.471× 10−2

K̂avg 0.2002 0.1997 0.1999 0.2002

K̂SD 7.715× 10−3 5.107× 10−3 6.751× 10−3 6.549× 10−3

SE(K̂) 7.477× 10−3 4.876× 10−3 6.727× 10−3 6.473× 10−3

T = 28.28

Ĉavg 0.0990 0.0997 0.0998 0.1007

ĈSD 1.008× 10−2 9.940× 10−3 1.172× 10−2 1.153× 10−2

SE(Ĉ) 1.015× 10−2 1.012× 10−2 1.180× 10−2 1.146× 10−2

K̂avg 0.2006 0.2000 0.2009 0.2000

K̂SD 7.797× 10−3 4.753× 10−3 8.777× 10−3 5.443× 10−3

SE(K̂) 7.030× 10−3 4.778× 10−3 7.289× 10−3 5.159× 10−3
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Table 16: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C2).

N = 15, σ2
0 = 0.1

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0988 0.1002 0.1003 0.1014

ĈSD 1.703× 10−2 1.492× 10−2 1.863× 10−2 2.138× 10−2

SE(Ĉ) 1.721× 10−2 1.577× 10−2 1.802× 10−2 2.080× 10−2

K̂avg 0.1998 0.1997 0.2004 0.2000

K̂SD 1.073× 10−2 6.885× 10−3 9.921× 10−3 9.483× 10−3

SE(K̂) 1.057× 10−2 6.895× 10−3 9.513× 10−3 9.154× 10−3

T = 28.28

Ĉavg 0.0990 0.0997 0.0998 0.1007

ĈSD 1.008× 10−2 9.940× 10−3 1.172× 10−2 1.153× 10−2

SE(Ĉ) 1.015× 10−2 1.012× 10−2 1.180× 10−2 1.146× 10−2

K̂avg 0.2006 0.2000 0.2009 0.2000

K̂SD 7.797× 10−3 4.753× 10−3 8.777× 10−3 5.443× 10−3

SE(K̂) 7.030× 10−3 4.778× 10−3 7.289× 10−3 5.159× 10−3

Table 17: Percent of confidence ellipsoids which contain the true parameter values
(T = 14.14, constraint implementation (C2)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 95.5% (SE = 0.66%) 93.9% (SE = 0.76%) 94.3% (SE = 0.73%)

D-opt 95.3% (SE = 0.67%) 93.7% (SE = 0.77%) 95.5% (SE = 0.66%)

E-opt 94.6% (SE = 0.71%) 94.9% (SE = 0.70%) 94.0% (SE = 0.75%)

Uniform 95.1% (SE = 0.68%) 95.1% (SE = 0.68%) 94.5% (SE = 0.72%)

Table 18: Percent of confidence ellipsoids which contain the true parameter values
(T = 28.28, constraint implementation (C2)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 94.6% (SE = 0.71%) 93.4% (SE = 0.79%) 93.1% (SE = 0.80%)

D-opt 93.7% (SE = 0.77%) 95.0% (SE = 0.69%) 92.3% (SE = 0.84%)

E-opt 93.0% (SE = 0.81%) 92.7% (SE = 0.82%) 92.4% (SE = 0.84%)

Uniform 94.6% (SE = 0.71%) 94.9% (SE = 0.70%) 95.2% (SE = 0.68%)
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Figure 14: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 28.28 and constraint implementation
(C2)).
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Figure 15: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 14.14 and constraint implementation
(C3)).
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Table 19: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C3).

N = 15, σ2
0 = 0.01

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.1002 0.1002 0.1003 0.0999

ĈSD 5.396× 10−3 4.957× 10−3 6.616× 10−3 6.664× 10−3

SE(Ĉ) 5.124× 10−3 4.938× 10−3 6.361× 10−3 6.577× 10−3

K̂avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.888× 10−3 2.318× 10−3 4.770× 10−3 2.888× 10−3

SE(K̂) 3.735× 10−3 2.248× 10−3 4.162× 10−3 2.895× 10−3

T = 28.28

Ĉavg 0.0999 0.0999 0.1002 0.1000

ĈSD 4.785× 10−3 4.398× 10−3 5.593× 10−3 5.147× 10−3

SE(Ĉ) 4.492× 10−3 4.372× 10−3 5.409× 10−3 5.127× 10−3

K̂avg 0.2001 0.1999 0.2005 0.1999

K̂SD 3.325× 10−3 2.027× 10−3 4.067× 10−3 2.317× 10−3

SE(K̂) 3.088× 10−3 2.005× 10−3 3.539× 10−3 2.307× 10−3

Table 20: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C3).

N = 15, σ2
0 = 0.05

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0997 0.1001 0.1008 0.0996

ĈSD 1.185× 10−2 1.082× 10−2 1.451× 10−2 1.474× 10−2

SE(Ĉ) 1.146× 10−2 1.104× 10−2 1.422× 10−2 1.471× 10−2

K̂avg 0.2007 0.2002 0.2014 0.2000

K̂SD 9.063× 10−3 4.951× 10−3 1.089× 10−2 6.885× 10−3

SE(K̂) 8.351× 10−3 5.028× 10−3 9.307× 10−3 6.473× 10−3

T = 28.28

Ĉavg 0.0993 0.1000 0.0991 0.0992

ĈSD 1.010× 10−2 9.973× 10−3 1.313× 10−2 1.147× 10−2

SE(Ĉ) 1.005× 10−2 9.775× 10−3 1.209× 10−2 1.146× 10−2

K̂avg 0.2006 0.2001 0.2027 0.2003

K̂SD 7.581× 10−3 4.465× 10−3 1.433× 10−2 5.200× 10−3

SE(K̂) 6.905× 10−3 4.484× 10−3 7.913× 10−3 5.159× 10−3
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Table 21: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C3).

N = 15, σ2
0 = 0.1

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.1002 0.1001 0.0995 0.0988

ĈSD 1.736× 10−2 1.603× 10−2 2.028× 10−2 2.074× 10−2

SE(Ĉ) 1.620× 10−2 1.562× 10−2 2.012× 10−2 2.080× 10−2

K̂avg 0.2012 0.2001 0.2021 0.2004

K̂SD 1.310× 10−2 7.205× 10−3 1.665× 10−2 9.417× 10−3

SE(K̂) 1.181× 10−2 7.110× 10−3 1.316× 10−2 9.154× 10−3

T = 28.28

Ĉavg 0.0989 0.1001 0.0968 0.1007

ĈSD 1.448× 10−2 1.372× 10−2 1.743× 10−2 1.730× 10−2

SE(Ĉ) 1.421× 10−2 1.382× 10−2 1.710× 10−2 1.621× 10−2

K̂avg 0.2019 0.2002 0.2056 0.2002

K̂SD 1.218× 10−2 6.432× 10−3 2.156× 10−2 7.437× 10−3

SE(K̂) 9.765× 10−3 6.341× 10−3 1.119× 10−2 7.295× 10−3
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Table 22: Percent of confidence ellipsoids which contain the true parameter values
(T = 14.14, constraint implementation (C3)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 94.7% (SE = 0.71%) 94.9% (SE = 0.70%) 93.5% (SE = 0.78%)

D-opt 93.9% (SE = 0.76%) 95.1% (SE = 0.68%) 95.1% (SE = 0.68%)

E-opt 94.9% (SE = 0.70%) 93.8% (SE = 0.76%) 92.1% (SE = 0.85%)

Uniform 94.3% (SE = 0.73%) 93.7% (SE = 0.77%) 95.6% (SE = 0.65%)

Table 23: Percent of confidence ellipsoids which contain the true parameter values
(T = 28.28, constraint implementation (C3)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 93.9% (SE = 0.76%) 94.6% (SE = 0.71%) 93.3% (SE = 0.79%)

D-opt 94.4% (SE = 0.73%) 94.7% (SE = 0.71%) 94.6% (SE = 0.71%)

E-opt 95.3% (SE = 0.67%) 91.1% (SE = 0.90%) 86.5% (SE = 1.08%)

Uniform 94.7% (SE = 0.71%) 95.3% (SE = 0.67%) 93.9% (SE = 0.76%)

Table 24: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C4).

N = 15, σ2
0 = 0.01

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0999 0.1003 0.0998 0.0998

ĈSD 5.235× 10−3 5.136× 10−3 6.716× 10−3 6.532× 10−3

SE(Ĉ) 5.124× 10−3 5.108× 10−3 6.361× 10−3 6.577× 10−3

K̂avg 0.2001 0.2000 0.2000 0.2001

K̂SD 4.010× 10−3 2.289× 10−3 4.426× 10−3 2.926× 10−3

SE(K̂) 3.735× 10−3 2.295× 10−3 4.162× 10−3 2.895× 10−3

T = 28.28

Ĉavg 0.0999 0.1001 0.1001 0.1000

ĈSD 4.434× 10−3 4.303× 10−3 5.596× 10−3 4.906× 10−3

SE(Ĉ) 4.504× 10−3 4.391× 10−3 5.419× 10−3 5.127× 10−3

K̂avg 0.2001 0.1998 0.2002 0.1999

K̂SD 3.354× 10−3 1.989× 10−3 3.924× 10−3 2.371× 10−3

SE(K̂) 3.116× 10−3 2.003× 10−3 3.546× 10−3 2.307× 10−3
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Figure 16: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 28.28 and constraint implementation
(C3)).

5.3 Discussion of Harmonic Oscillator Monte Carlo Results

From the harmonic oscillator Monte Carlo results we again observe that as the level of noise in the
data decreases so does the variance in the parameter estimates (θ̂SD) and the estimates approach
the true values. Examining the average parameter estimates, we find that in all cases the averages
are close to the true values θ0 = (Cnom,Knom)T = (0.1, 0.2)T. However in Figures 11 – 18 often it
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Figure 17: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 14.14 and constraint implementation
(C4)).

appears as though for noise levels σ20 = 0.05 and 0.10, E-optimal and SE-optimal distributions are
right-skewed for the parameter K. Also, often E-optimal distributions appear to be left-skewed for
parameter C for the higher levels of noise in the data. This causes the average estimates of K to be
slightly larger than the true value for E-optimal and SE-optimal, and the average estimate of C to
be slightly smaller than the true value for E-optimal.

Comparing the standard deviations of the parameter estimates θ̂SD to the asymptotic standard
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Table 25: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C4).

N = 15, σ2
0 = 0.05

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0994 0.1004 0.1000 0.1004

ĈSD 1.172× 10−2 1.196× 10−2 1.498× 10−2 1.459× 10−2

SE(Ĉ) 1.146× 10−2 1.142× 10−2 1.422× 10−2 1.471× 10−2

K̂avg 0.2006 0.2000 0.2011 0.1996

K̂SD 9.001× 10−3 5.172× 10−3 1.100× 10−2 6.683× 10−3

SE(K̂) 8.351× 10−3 5.133× 10−3 9.307× 10−3 6.473× 10−3

T = 28.28

Ĉavg 0.0997 0.0997 0.0991 0.1000

ĈSD 9.840× 10−3 1.019× 10−2 1.299× 10−2 1.147× 10−2

SE(Ĉ) 1.007× 10−2 9.820× 10−3 1.212× 10−2 1.146× 10−2

K̂avg 0.2007 0.2000 0.2022 0.1999

K̂SD 7.336× 10−3 4.351× 10−3 1.268× 10−2 5.005× 10−3

SE(K̂) 6.967× 10−3 4.478× 10−3 7.928× 10−3 5.159× 10−3

errors SE(θ̂) we find that they are very close in every case. Comparing the standard deviations of
the parameter estimates among the optimal design methods and the uniform mesh often we find
that D-optimal had the smallest standard deviations, followed by SE-optimal for parameter C and
the uniform mesh for parameter K. In Tables 14 – 16 for T = 28.28, and 24 – 26 D-optimal and
SE-optimal had the smallest standard deviations for the parameter C. For parameter K, D-optimal
had the smallest standard deviation again followed by the uniform mesh.

For the harmonic oscillator example 95% confidence ellipsoid coverage of the true parameter value
is better overall than in the logistic example. This may not be a reasonable comparison since only
p = 2 parameters are estimated for the harmonic oscillator example, whereas in the logistic example
p = 3. In this example, no optimal design mesh is consistently better in terms of confidence ellipsoid
coverage of the true parameter value. However, in almost every case E-optimal has the worst coverage
compared to the other optimal design methods (though still being fairy decent).
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Table 26: Average estimates θ̂avg with corresponding standard deviations θ̂SD from

M = 1000 Monte Carlo trials as well as asymptotic standard errors SE(θ̂).
Estimation based on constraint implementation (C4).

N = 15, σ2
0 = 0.1

T = 14.14

SE-opt D-opt E-opt Uniform

Ĉavg 0.0992 0.1002 0.0996 0.1013

ĈSD 1.635× 10−2 1.691× 10−2 2.099× 10−2 2.089× 10−2

SE(Ĉ) 1.621× 10−2 1.615× 10−2 2.012× 10−2 2.080× 10−2

K̂avg 0.2013 0.2000 0.2020 0.1994

K̂SD 1.326× 10−2 7.446× 10−3 1.611× 10−2 9.633× 10−3

SE(K̂) 1.181× 10−2 7.259× 10−3 1.316× 10−2 9.154× 10−3

T = 28.28

Ĉavg 0.0991 0.1004 0.0979 0.0995

ĈSD 1.404× 10−2 1.377× 10−2 1.752× 10−2 1.579× 10−2

SE(Ĉ) 1.424× 10−2 1.389× 10−2 1.714× 10−2 1.621× 10−2

K̂avg 0.2012 0.2002 0.2046 0.2000

K̂SD 1.168× 10−2 6.757× 10−3 1.960× 10−2 7.242× 10−3

SE(K̂) 9.853× 10−3 6.333× 10−3 1.121× 10−2 7.295× 10−3

Table 27: Percent of confidence ellipsoids which contain the true parameter values
(T = 14.14, constraint implementation (C4)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 94.6% (SE = 0.71%) 93.9% (SE = 0.76%) 95.5% (SE = 0.66%)

D-opt 94.8% (SE = 0.70%) 94.4% (SE = 0.73%) 94.3% (SE = 0.73%)

E-opt 94.6% (SE = 0.71%) 94.0% (SE = 0.75%) 93.1% (SE = 0.80%)

Uniform 95.2% (SE = 0.68%) 96.3% (SE = 0.60%) 94.5% (SE = 0.72%)

Table 28: Percent of confidence ellipsoids which contain the true parameter values
(T = 28.28, constraint implementation (C4)).

σ20 = 0.01 σ20 = 0.05 σ20 = 0.10

SE-opt 94.9% (SE = 0.70%) 94.4% (SE = 0.73%) 93.9% (SE = 0.76%)

D-opt 94.2% (SE = 0.74%) 94.4% (SE = 0.73%) 95.0% (SE = 0.70%)

E-opt 94.7% (SE = 0.71%) 92.5% (SE = 0.83%) 89.9% (SE = 0.95%)

Uniform 96.2% (SE = 0.60%) 94.9% (SE = 0.70%) 94.7% (SE = 0.71%)
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Figure 18: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panels (b),(d),(f))
resulting from Monte Carlo simulations. Simulated data was generated with σ20 = 0.01 (top row),
σ20 = 0.05 (middle row), and σ20 = 0.10 (bottom row) (T = 28.28 and constraint implementation
(C4)).
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6 Concluding Remarks

We have considered the performance of three optimal design criteria based on the Fisher Information
Matrix, the SE-optimal, D-optimal and E-optimal design methods on two popular examples, the
logistic growth model and the harmonic oscillator. We use Monte Carlo simulations with M = 1000
to compare standard errors for estimated parameters with each method. The recently introduced
[8] SE-optimal design is quite competitive with and in some cases superior to the more traditional
D-optimal and E-optimal design methods. In summary, the results found and reported here are
fully consistent with those given in [8] where the analysis is based on asymptotic standard errors
computed with a single realization.
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user, Boston 1989.

[10] H.T. Banks and H.T. Tran, Mathematical and Experimental Modeling of Physical and Biological
Processes, Chapman and Hall/CRC, Boca Raton, FL, 2009.

[11] M.P.F. Berger and W.K. Wong (Editors), Applied Optimal Designs, John Wiley & Sons, Chich-
ester, UK, 2005.

[12] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, NY, 1968.

[13] M. Davidian and D. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman &
Hall, London, 1998.

[14] V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York and London, 1972.

[15] V.V. Fedorov and P. Hackel, Model-Oriented Design of Experiments, Springer-Verlag, New York,
NY, 1997.

[16] P. J. Huber, Robust Statistics, John Wiley & Sons, Inc., New York, NY, 1981.

[17] F. Kappel and A. V. Kuntsevich, An implementation of Shor’s r-algorithm, Computational
Optimization and Applications, 15 (2000), 193–205.

[18] A. Kuntsevich and F. Kappel, SolvOpt, retrieved December 2009, from
http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/.

[19] W. Müller and M. Stehlik, Issues in the optimal design of computer simulation experiments,
Appl. Stochastic Models in Business and Industry, 25 (2009), 163–177.

[20] M. Patan and B. Bogacka, Optimum experimental designs for dynamic systems in the presence
of correlated errors, Computational Statistics and Data Analysis, 51 (2007), 5644–5661.

[21] Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory,
Theor. Prob. Appl., 1 (1956), 157–214.

[22] F. Pukelsheim, Optimal Design of Experiments, JohnWiley & Sons, New York, NY, 1993.

[23] G.A.F. Seber and C.J. Wild, Nonlinear Regression, Wiley-Interscience, Hoboken, 2003.

[24] D. Ucinski and A.C. Atkinson, Experimental design for time-dependent models with correlated
observations, Studies in Nonlinear Dynamics and Econometrics, 8(2) (2004), Article 13: The
Berkeley Electronic Press.

39


